Descriptif
L'objectif de ce cours est de présenter les principales idées de la théorie des options dans le cadre des marchés à temps continu.
L'exposé se focalise sur le modèle de Black, Scholes et Merton, aujourd'hui couramment utilisé par les praticiens sur les marchés de produits dérivés.
Les idées prévalant à l'évaluation et à la couverture des options diffèrent peu de celles introduites dans le cours MAE11 pour les marchés à temps discret. Cela étant, les outils mathématiques utilisés sont plus délicats à manipuler en temps continu et le formalisme du modèle de Black, Scholes et Merton illustre toute la richesse des méthodes de calcul stochastique en finance.
Le plan du cours est le suivant :
> Présentation détaillée du modèle de Black, Scholes et Merton,
> Compléments de calcul stochastique : le théorème de Girsanov et le théorème de représentation des martingales browniennes de carré intégrable,
> Formalisation et caractérisation de l'abscence d'opportunités d'arbitrage; application à l'évaluation et à la couverture des options européennes,
> Analyse de sensibilité des prix des options européennes : les "grecques",
> Formules de Feynman-Kac et introduction à la valorisation et à la couverture des options européennes par la résolution d'équations aux dérivées partielles.
Diplôme(s) concerné(s)
- Master 1 Applied Mathematics ans statistics - Orsay
- Diplôme d'Ingénieur de l'Ecole Nationale Supérieure de Techniques Avancées
UE de rattachement
- PRB210 : Modèles mathématique de la finance
Format des notes
Numérique sur 20Pour les étudiants du diplôme Diplôme d'Ingénieur de l'Ecole Nationale Supérieure de Techniques Avancées
Le rattrapage est autorisé (Max entre les deux notes écrêté à une note seuil)- le rattrapage est obligatoire si :
- Note initiale < 6
- le rattrapage peut être demandé par l'étudiant si :
- 6 ≤ note initiale < 10
Le coefficient de l'UE est : 1
L'UE est évaluée par les étudiants.