Descriptif
A partir des outils de l'analyse convexe, l'objectif de ce cours est de présenter les algorithmes de résolution des problèmes d'optimisation non différentiables. Le cours fait appel à de nombreux exemples d'application et met en évidence la nécessité de prendre spécifiquement en considération le caractère non différentiable des problèmes.
Les trois séances suivantes présentent plusieurs classes d’algorithmes en optimisation sous-différentiable, leurs applications dans le cadre de la relaxation Lagrangienne et leur utilisation en dualité : méthodes proximales et algorithmes du gradient proximal, méthodes de plans sécants et algorithme des faisceaux, méthode du recouvrement progressif en optimisation stochastique.
Les deux dernières séances seront consacrées à des travaux dirigés et à un examen écrit.
Ce cours est ouvert aux étudiants du M2 "Data Sciences".Objectifs pédagogiques
effectifs minimal / maximal:
10/50Diplôme(s) concerné(s)
Pour les étudiants du diplôme Diplôme d'Ingénieur de l'Ecole Nationale Supérieure de Techniques Avancées
Cours MAP-OPT1 et MAP-OPT2 de l'ENSTA (Jean-Charles Gilbert).
Format des notes
Numérique sur 20Littérale/grade européenPour les étudiants du diplôme Diplôme d'Ingénieur de l'Ecole Nationale Supérieure de Techniques Avancées
Vos modalités d'acquisition :
- le rattrapage est obligatoire si :
- Note initiale < 6
- le rattrapage peut être demandé par l'étudiant si :
- 6 ≤ note initiale < 10
- Crédits ECTS acquis : 1.5 ECTS
- Scientifique acquis : 1.5
Le coefficient de l'UE est : 1
La note obtenue rentre dans le calcul de votre GPA.
L'UE est évaluée par les étudiants.
Programme détaillé
1. Sous-différentiabilité des fonctions convexes. Calcul sous-différentiel. Condition d'optimalité dans le cas sous-différentiable.
2. Algorithmes en optimisation sous-différentiable. Méthodes proximales.
3. Dualité et relaxation lagrangienne. Travaux dirigés.
4. Lagrangien augmenté. Algorithme du recouvrement progressif (Progressive Hedging).
5. Travaux dirigés.
6. Examen écrit