Descriptif
Tout au long du cours, nous montrerons comment cette théorie s'applique à divers problèmes physiques, notamment à l'étude des guides d'ondes. Nous nous intéresserons plus particulièrement à l'étude des guides dits ouverts, dont la fibre optique constitue un exemple important.
Objectifs pédagogiques
effectifs minimal / maximal:
10/30Diplôme(s) concerné(s)
- Master 1 Applied Mathematics ans statistics - Orsay
- Diplôme d'Ingénieur de l'Ecole Nationale Supérieure de Techniques Avancées
- Master 1 Mathématiques Appliquées
Parcours de rattachement
Pour les étudiants du diplôme Diplôme d'Ingénieur de l'Ecole Nationale Supérieure de Techniques Avancées
MA102
Format des notes
Numérique sur 20Littérale/grade européenPour les étudiants du diplôme Master 1 Mathématiques Appliquées
Le rattrapage est autorisé (Note de rattrapage conservée)- le rattrapage est obligatoire si :
- Note initiale < 7
- le rattrapage peut être demandé par l'étudiant si :
- 7 ≤ note initiale < 10
- Crédits ECTS acquis : 4 ECTS
Le coefficient de l'UE est : 1
Pour les étudiants du diplôme Master 1 Applied Mathematics ans statistics - Orsay
Vos modalités d'acquisition :
Examen écrit et oral
Le rattrapage est autorisé (Note de rattrapage conservée)- le rattrapage est obligatoire si :
- Note initiale < 7
- le rattrapage peut être demandé par l'étudiant si :
- 7 ≤ note initiale < 10
- Crédits ECTS acquis : 2.5 ECTS
- Scientifique acquis : 2.5
Le coefficient de l'UE est : 1
La note obtenue rentre dans le calcul de votre GPA.
L'UE est évaluée par les étudiants.
Pour les étudiants du diplôme Diplôme d'Ingénieur de l'Ecole Nationale Supérieure de Techniques Avancées
Vos modalités d'acquisition :
- le rattrapage est obligatoire si :
- Note initiale < 6
- le rattrapage peut être demandé par l'étudiant si :
- 6 ≤ note initiale < 10
- Crédits ECTS acquis : 2.5 ECTS
- Scientifique acquis : 2.5
Le coefficient de l'UE est : 1
La note obtenue rentre dans le calcul de votre GPA.
L'UE est évaluée par les étudiants.
Programme détaillé
1. Cours : Introduction aux guides d'ondes. La notion d'opérateur non borné. / TD : Exemples monodimensionnels de guides d'ondes. Exemples d’opérateurs bornés ou non bornés, fermés ou non fermés, calcul d’adjoints.
2. Cours : Opérateurs autoadjoints : définition et caractérisation. Ensemble résolvant et spectre (ponctuel, résiduel, continu). / TD : Caractère autoadjoint de l’opérateur scalaire des modes guidés. Spectre de l’opérateur de multiplication dans L2. Spectre de l’opérateur de translation sur l2.
3. Cours : Notions de compacité et de convergence faible dans un espace de Hilbert. Opérateurs compacts ou à résolvante compacte. / TD : Exercices.
4. Cours : Théorie spectrale des opérateurs autoadjoints compacts. / TD : Applications.
5. Cours : Étude des guides d’ondes fermés. / TD : Formules de min-max.
6. Cours : Spectre des opérateurs autoadjoints non compacts : définition et caractérisation du spectre essentiel. / TD : Démonstration du théorème de Weyl. Détermination du spectre essentiel pour le problème de la fibre optique.
7. Cours : Spectre des opérateurs autoadjoints non compacts : relations entre l’image numérique et le spectre, application à la preuve de l’existence de valeurs propres. / TD : Etude du mode fondamental d’une fibre optique.
8. Cours : Principe du Min-Max. / TD : Principe de comparaison de Dirichlet.
9. Cours : Le théorème spectral : décomposition spectrale d’un opérateur autoadjoint. TD : La formule de Stone.
10 : Réinventer la transformée de Fourier.
11 : Séance de révision.
12 : Examen final