Descriptif
Le but de cet enseignement est d’exposer les fondamentaux modernes de la théorie de la mesure et de l’intégration, tels qu’ils ont été pensés par Henri Léon Lebesgue et Émile Borel au début du siècle dernier. En motivant le développement des ces concepts par le biais (sensiblement anachronique) du problème de transport optimal, formulé par Gaspard Monge en 1781 et remis au goût du jour par Leonid Kantorovich en 1942, ce cours vise principalement à munir les étudiants qui le suivront de connaissances solides en théorie de l’intégration, en insistant particulièrement sur ses aspects géométriques et fonctionnels.
Durant la première partie du cours, on introduira les objets fondamentaux que sont les mesures et leurs tribus, en suivant la construction analytique par les mesures extérieures inspirée par l’ouvrage d’Evans et Gariepy. Nous ne manquerons évidemment pas d’expliciter son lien avec l’approche probabiliste classique et les notions de mesures complétées. On établira ensuite les principaux résultats de régularité pour les mesures – intérieure, extérieure, Radon –, et l’on démontrera le critère de Carathéodory permettant de vérifier si une mesure extérieure générale est Borélienne. On concluera ce premier volet par la construction de la mesure de Lebesgue et l’énoncé de ses propriétés fondamentales, et l’on survolera (si le temps le permet) ses généralisations naturelles à des objets de dimension inférieure que sont les mesures de Hausdorff.
La deuxième partie de cet enseignement sera dédiée à la théorie des fonctions mesurables et de l’intégration au sens de Lebesgue. Après une courte discussion des limitations intrinsèques de la notion d’intégrale au sens de Riemann, on introduira la définition des fonctions mesurables et l’on discutera quelques unes de leurs propriétés élémentaires. On présentera ensuite les résultats fondamentaux de Lusin et d’Egorov, qui permettent de mieux appréhender la structure de ces dernières ainsi que leurs liens avec les objets plus familiers que sont les fonctions continues, et l’on montrera enfin le résultat fondamental d’approximation ponctuelle par les fonctions étagées. A partir de ce dernier, nous serons à même de définir l’intégrale d’une fonction mesurable au sens de Lebesgue, et d’établir les théorèmes classiques de convergence (Fatou, monotone et dominée). On concluera en démontrant les théorèmes de Tonelli et Fubini sur les mesures produits, et en présentant succinctement le théorème de désintégration.
La troisième et dernière partie de ce cours se focalisera sur les aspects fonctionnels de la théorie de la mesures, en ayant pour objectif de revenir à l’étude du problème de transport optimal. Partant de l’observation que les mesures de Radon forment un espace de Banach lorsqu’elles sont munis de la norme dite de variation totale, on notera que ce dernier se trouve être naturellement inclus dans le dual topologique des fonctions continues à support compact. Ces éléments nous mèneront à énoncer et prouver le théorème de représentation de Riesz, qui affirme qu’en réalité, ces deux espaces coïncident. On introduira enfin la topologie tendue des mesures de probabilité et le théorème de compacité de Prokhorov, à partir desquels on montrera que le problème de transport optimal est bien posé dans sa forme relaxée sur les mesures de probabilité due à Kantorovich.
Objectifs pédagogiques
Être capable de mettre en oeuvre les principales notions et théorèmes de la théorie de la mesure
effectifs minimal / maximal:
10/30Diplôme(s) concerné(s)
Pour les étudiants du diplôme Diplôme d'Ingénieur de l'Ecole Nationale Supérieure de Techniques Avancées
Aucun pré-requis pour suivre ce cours.
Règle d'exclusion : UE EAT11 Ou UE EAT12 Ou Ou UE CBT12 Ou UE CBT13 Ou Ou UE INT21 Ou Ou UE INT23 Ou Ou Ou Ou UE MST31 Ou UE MST32 Ou UE MST33 Ou UE EPMT11
Format des notes
Numérique sur 20Littérale/grade européenPour les étudiants du diplôme Diplôme d'Ingénieur de l'Ecole Nationale Supérieure de Techniques Avancées
Vos modalités d'acquisition :
- le rattrapage est obligatoire si :
- Note initiale < 6
- le rattrapage peut être demandé par l'étudiant si :
- 6 ≤ note initiale < 10
- Crédits ECTS acquis : 1.25 ECTS
- Scientifique acquis : 1.25
Le coefficient de l'UE est : 1
La note obtenue rentre dans le calcul de votre GPA.
L'UE est évaluée par les étudiants.
Programme détaillé
Voir descriptif
Mots clés
théorie de la mesure, intégration, mesure de LebesgueMéthodes pédagogiques
Cours au tableauSupport pédagogique multimédia