Descriptif
Nous faisons une introduction à l'étude des classes de complexité, en s'appuyant sur divers problèmes d'optimisation combinatoire, principalement de graphes.
A la fin du cours les élèves sauront évaluer la difficulté d'un problème de recherche opérationnelle et déterminer le type de résolution approprié: une méthode exacte pour un problème "facile" et, en général, une méthode approchée pour un problème "difficile".
Nous ferons une étude détaillée des classes P et NP.
Les problèmes calculables en temps polynomial déterministe forment la classe P. La classe NP contient la classe P et est constituée de problèmes dont la solution est vérifiable en temps polynomial, mais la trouver peut demander un temps exponentiel. Ces deux classes contiennent des milliers de problèmes de la théorie des graphes, de logique, des automates et d'autres domaines.
Objectifs pédagogiques
- Stage de communication : 23
effectifs minimal / maximal:
8/40Diplôme(s) concerné(s)
Pour les étudiants du diplôme Diplôme d'Ingénieur de l'Ecole Nationale Supérieure de Techniques Avancées
de préférence SOD321 - Optimisation Discrète
Format des notes
Numérique sur 20Littérale/grade européenPour les étudiants du diplôme Diplôme d'Ingénieur de l'Ecole Nationale Supérieure de Techniques Avancées
Vos modalités d'acquisition :
- le rattrapage est obligatoire si :
- Note initiale < 6
- le rattrapage peut être demandé par l'étudiant si :
- 6 ≤ note initiale < 10
- Crédits ECTS acquis : 1.5 ECTS
- Scientifique acquis : 1.5
Le coefficient de l'UE est : 1
La note obtenue rentre dans le calcul de votre GPA.
L'UE est évaluée par les étudiants.
Programme détaillé
1. Bloc de module:
Séance 1
Introduction générale à la complexité des algorithmes. Mesure de l’efficacité d’un algorithme. Problèmes de décision. Transformation polynomiale. Définition des classes P, NP, NP-C, Co-NP. Exemples.
2. Bloc de module:
Séance 2
Problèmes d'optimisation combinatoire, problèmes NP-difficiles.
3. Bloc de module:
Séance 3
Transformation de problèmes.
Preuves de NP-complétude de plusieurs problèmes de RO et de graphes
4. Bloc de module:
Séance 4
Suite: Preuves de NP-complétude de plusieurs problèmes de RO et de graphes.
Algorithmes pseudo-polynomiaux.
5. Bloc de module:
Séance 5
Algorithmes approchés
6. Bloc de module:
Examen écrit