v2.11.0 (5674)

Enseignement spécifique des masters - MPRO-PM : Programmation mathématique

Domaine > Applied Maths.

Descriptif

Ce cours présente plusieurs approches mathématiques et numériques pour planifier des trajectoires de systèmes commandés non-linéaire. 

28 heures en présentiel (8 blocs ou créneaux)
réparties en:
  • Travaux dirigés en salle info : 2
  • Cours magistral : 1

Diplôme(s) concerné(s)

Format des notes

Numérique sur 20

Littérale/grade européen

Pour les étudiants du diplôme Master 2 Parisien Recherche Opérationnelle

Le rattrapage est autorisé (Max entre les deux notes écrêté à une note seuil)
  • le rattrapage est obligatoire si :
    Note initiale < 10
L'UE est acquise si Note finale >= 10
  • Crédits ECTS acquis : 3 ECTS

La note obtenue rentre dans le calcul de votre GPA.

Pour les étudiants du diplôme Diplôme d'Ingénieur de l'Ecole Nationale Supérieure de Techniques Avancées

Le rattrapage est autorisé (Max entre les deux notes écrêté à une note seuil)
  • le rattrapage est obligatoire si :
    Note initiale < 6
  • le rattrapage peut être demandé par l'étudiant si :
    6 ≤ note initiale < 10
L'UE est acquise si Note finale >= 10
  • Crédits ECTS acquis : 3 ECTS

La note obtenue rentre dans le calcul de votre GPA.

Pour les étudiants du diplôme Inside ENSTA Paris

Le rattrapage est autorisé
    L'UE est acquise si Note finale >= 10
    • Crédits ECTS acquis : 3 ECTS

    La note obtenue rentre dans le calcul de votre GPA.

    Programme détaillé

    1. Bloc de module:
    Introduction + Point de vue robotique (survey)
    Formalisation, classification des problèmes
    2. Bloc de module:
    Le cas lineaire: planification directe (grammien), via Brunovsky
    3. Bloc de module:
    Equivalence de systèmes:
     - équivalence par feedback: défi nition, critères de linéarisation (locale et globale)
     - équivalence dynamique, platitude
    4. Bloc de module:
    Propriétés des ensembles atteignables, rappels de commandabilité
    5. Bloc de module:
    Commande optimal, PMP, LQ
    6. CM:
    Calcul des ensembles atteignables, approche "level-set".
    FIN DU PROGRAMME COURS ENSTA (OROC-SC-PL)
    7. TD en salle info:
    Approche HJB. Simulations numériques
    FIN DU PROGRAMME COURS ENSTA (OROC-SC-PL)
    8. Bloc de module:
    DERNIÈRE SEANCE POUR MASTER ATSI:
     Le cas non-holonome: méthodes basées sur structure d'algèbre de Lie, commandes dans des familles paramétrées (polynômes, sinusodes), ex. des systèmes
    chaînés, processus par itération, méthode de continuation

    Veuillez patienter