Contexte
The Master Nuclear Energy has a strong international vocation since more than 50% of students come from outside France (typically twenty distinct nationalities each academic year), of which 75% outside European Union. Agreements, concerning both Master 1 and the five different paths in Master 2, were signed with the University of Wuhan (China), the University of Dehli (India) and Imperial College (UK). An agreement with the European Union KIC ‘InnoEnergy’ (steered by the European Institute of Technology) leaded to the creation - with the Master “MaNuEn” of UJF Grenoble – of the Master of Science EMINE, in collaboration with UPC (Spain), KTH (Sweden), and KIT (Germany) since 2011. Additional agreements are currently considered on selected geographic regions targeted by the industrial partners: Brazil, Poland, and Turkey.
Objectif
Ce parcours est enseigné uniquement en langue anglaise, toutes les informations sont affichées en anglais.
The Master of Nuclear Engineering has for objective to form high-level foreign and French students to answer the current and future needs for the nuclear industry: optimization of the performances of the current nuclear reactors, design of the nuclear installations of 3rd generation (reactors and factories of the fuel cycle), developments of new processes and systems of 4th generation, operation of the installations in functioning, decommissioning and waste management.
The objective of the “Nuclear Plant Design” major is to give students a profound education in the field of design and construction of nuclear installations, particularly with regards to safety monitoring, general operation, structures and infrastructures as well as systems and equipment. This gives the necessary foundations for the understanding of physical phenomena, which underly the operation of nuclear reactors. This also allows you to familiarise yourself with the main codes of calculation for structures and nuclear reactor operation. This equally carries notions of radioprotection in particular the protection of people and their environment. This major aims, apart from technical skills, to give students the complete and big picture of the field “Nuclear Energy” with, not only technical knowledge, but also economical, organisational and managerial knowledge.
contenu
- S3 - Semestre 3 NPD
-
Matières Ects Cours TD TP PWR Functional Description 4 30h - - Introduction to safety 4 30h - - Environment & Society (conferences) - - - - Radiation protection 1 2 15h 3h - Risk management 4 30h - - Basic Nuclear Physics 3 24h - - Radiation protection 3 17.5h 6.5h - Thermohydraulics 5 27h 15h - Material Physics 5 27h 27h - - S4 - Semestre 4 NPD
Matières | Ects | Cours | TD | TP |
---|---|---|---|---|
Calculation code | 4 | 20h | 20h | 20h |
Design and construction | 4 | 42h | - | - |
Systems and equipment | 4 | 39h | - | - |
Internship | 18 | - | - | - |
mots clés
Energie nucléaireDomaine Université Paris Saclay
Mention Ingénierie Nucléaire.niveau requis
M1
admission
compétences acquises
métiers
atouts
The Master is deeply related to the outstanding research environment provided by both « Orsay Campus » and the « Saclay's plateau". Several laboratories are consortium between Université Paris-Sud or a « Grande Ecole" and the French National Centre for Scientific Research (CNRS). CEA is also involved in research and development in nuclear energy. The French nuclear industry is strongly linked to research and development and education and training. The various strategic directions of research devoted to nuclear energy are considered in the training courses offered by the Master Nuclear Energy: safety improvement, performance improvements, 4th generation of nuclear systems, fuel cycle, nuclear waste management, decommissioning of existing nuclear plants. Professors and Lecturers perform a direct link between education and training in nuclear energy since a large part of them are involved in research teams. Members from both academic and industrial research teams serve on the Master’s executive Committee. They guarantee the tight coupling between education and strategic directions of research.
débouchés
The primary purpose of this major is to teach engineers design and implementation in the field of nuclear engineering. Releavent jobs mainly involve the design and building of nuclear power stations, but also for other facilities such as research reactors or other factories involved in the fuel cycle (the approach complements that of the Fuel Cycle major), both in France and abroad. The training in this major particularly leads on to jobs such as : Engineers : general installation, system design, equipment design, …. Project Engineers : lead and/or monitor the production in the factory or on-site installation, test and commissioning engineers,… Project Managers within this field be they for the big suppliers of power stations or nuclear reactors (AREVA NP or AREVA TA), or electricity producers or architect-engineers (EDF, GDF SUEZ,…), or even for nuclear services providers or nuclear equipment providers. This major has prospects for jobs in project management, design manager positions, management of construction sites or factories…
Parcours
- M2 MNE-M2 Master 2 Energie Nucléaire
- M2MNE-TC M2 MNE - Tronc commun
- M2MNE-Bloc 1 M2 MNE - Bloc 1 - Sûreté et gestion du risque
- MDC_5CSAF_TN Introduction à la sûreté. Criticité - Sécurité
- MDC_5CRP_TN Radioprotection
- MDC_5CRIS_CS Gestion des risques
- M2MNE-Bloc 2 M2 MNE - Bloc 2 - Production d’électricité : outils, besoins et capacités
- PHY_5CSYS_TN Nuclear Fuel Cycles. Nuclear Reactor Systems
- MDC_5CTRA_TN Transition énergétique et flexibilité
- MDC_5CENE_TN Fonctionnement d'une centrale nucléaire
- M2MNE-Bloc 1 M2 MNE - Bloc 1 - Sûreté et gestion du risque
- M2MNE-SPE-D M2 MNE Spécialité Nuclear Plan Design
- M2MNE-SPE-D3 Bloc 3 NPD - Physique et fonctionnement des réacteurs nucléaires
- PHY_5CFLUI_TN Thermohydraulics
- CSC_5DCOD_TA Conception, calculs & contrôle partie 1
- MDC_5DSYS_TA Systems and equipment
- PHY_5CDON_TN Nuclear Physics and Neutronics
- M2MNE-SPE-D4 Bloc 4 NPD - Génie mécanique et conception de centrales nucléaires
- MEC_5DCON_TA Physique des matériaux: béton
- MEC_5DSEI_TA De la sismologie à l'ingéniérie sismique
- CHE_5DCOR_TA Physique des matériaux: corosion
- MEC_5DNUM_TA Conception numérique
- MDC_5DDES_TA Conception
- M2MNE-SPE-D3 Bloc 3 NPD - Physique et fonctionnement des réacteurs nucléaires
- M2MNE-SPE-W M2 MNE Spécialité W
- M2MNE-SPE-W3 Bloc 3 DWM - Principes et méthodologie de gestion des déchets
- PHY_5CFWN_FR Introduction to Nuclear Physics, Neutronics
- MDC_5WDIS_PP Dismantling & Decommissioning nuclear facilities
- MDC_5WDEC_PP Politics, Strategie, Management Decommissioning
- MDC _5WWA1_CS Waste Management (Part 1)
- M2MNE-SPE-W4 Bloc 4 DWM - Gestion des déchets: application
- MDC _5WDEC_PP Methods of Decommissioning
- MDC_5WWA2_CS Waste Management
- CSC_5WCOD_CS Calculation Codes
- S4-W-DIS Dismantling & Decommissioning nuclear facilities (Part 2)
- M2MNE-SPE-W3 Bloc 3 DWM - Principes et méthodologie de gestion des déchets
- M2MNE-SPE-F M2 MNE Spécialité Fuel Cycle
- M2MNE-SPE-F3 Bloc 3 FC - Physique Nucléaire, Neutronique et Chimie
- PHY_5CFWN_FR Introduction to Nuclear Physics, Neutronics
- CHE_5FCMS_FR Cooling & Molten Salt
- CHE_5FSPE_FR Actinides electronic structure and spectroscopy
- M2MNE-SPE-F4 Bloc 4 FC - L'amont et l'aval du cycle du combustible
- CHE_5FFUE_CP Fuel: from Mine to the Reactor
- CHE_5FSEP_CP Separation and Recycling
- CSC_5FCOD_CP Process Simulation and Process Control
- CHE_5FDIS_CP Waste Disposal
- CHE_5FWAS_CP Waste Containment Materials
- M2MNE-SPE-F3 Bloc 3 FC - Physique Nucléaire, Neutronique et Chimie
- S4-C-INTER Master 2 MNE - Stage
- M2MNE-TC M2 MNE - Tronc commun
- M2MNE-SPE-O M2 MNE Spécialité O
- M2MNE-SPE-O3 Bloc 3 O - Base de Physique des réacteurs
- PHY_5CDON_TN Nuclear Physics and Neutronics
- PHY_5CFLUI_TN Thermohydraulics
- M2MNE-SPE-O4 Bloc 4 O - La sureté nucléaire en exploitation
- MDC_5OOPE_CS Operation management
- MDC_5ODEC_CS Risk-informed and decision making
- MDC_5OMAI_CS Maintenance
- MDC_5OSAF_CS Safety and production
- S4-O-NDT Non Destructive Testing
- M2MNE-SPE-O3 Bloc 3 O - Base de Physique des réacteurs
- M2MNE-SPE-R M2 MNE Spécialité R
- M2MNE-SPE-R3 Bloc 3 NRPE - Physique des réacteurs 1
- PHY_5RNEU_TN Neutronics 1
- PHY_5CFLUI_TN Thermohydraulics
- PHY_5RMAT_TN Nuclear Materials
- PHY_5RNUC_FR Nuclear Physics
- M2MNE-SPE-R4 Bloc 4 NRPE - Physique des réacteurs 2
- PHY_5RFLU_TN Advanced Thermal-hydraulics
- PHY_5RNEU_TN Neutronics 2
- PHY_5RPHS_TN Reactor Physics and Simulation
- PHY_5RMPH_TN Multiphysics and Uncertainties
- M2MNE-SPE-R3 Bloc 3 NRPE - Physique des réacteurs 1
- M2MNE - Bloc Auditeur M2 MNE Cursus Auditeur
- CHE_5DCOR_TA Physique des matériaux: corosion
- MDC_5DSYS_TA Systems and equipment
- MDC_5DDES_TA Conception
- MEC_5DNUM_TA Conception numérique