Descriptif
[Le cours sera donné en anglais].
L'optimisation est à la base de nombreux problèmes d'ingénierie, où nous sommes chargés de modéliser et de trouver la décision optimale dans une variété de contextes. Prenons l'exemple de la recherche du rectangle ayant la plus grande surface parmi ceux qui ont le même périmètre, ou de l'entraînement optimal des réseaux neuronaux.
L'optimisation est également très présente dans la vie de tous les jours, lorsque l'on doit "optimiser" son agenda pour faire coïncider toutes ses activités et trouver le temps d'étudier pour les examens.
Dans ce cours, nous allons présenter les concepts et résultats clés de l'optimisation continue différentiable et convexe en dimension finie.
(Nous laisserons de côté l'optimisation discrète (également connue sous le nom de recherche opérationnelle) et l'optimisation en dimension infinie (telle que l'optimisation de forme)).
Nous nous concentrerons sur les aspects théoriques de l'optimisation différentiable et convexe, tandis que les algorithmes de résolution des problèmes d'optimisation seront abordés dans le cours suivant OPT202 (par Andrea Simonetto). D'autres orientations et applications de l'optimisation sont également présentées dans le programme SOD (troisième année).
Les objectifs du cours sont les suivants
- comprendre ce qu'est l'optimisation : quels types de problèmes sont habituellement considérés et comment, quelles sont les hypothèses de base (telles que la convexité), et comment interpréter les résultats d'un problème d'optimisation
- apprendre à modéliser les applications comme des problèmes d'optimisation
- maîtriser les modèles et méthodes d'optimisation de base
- acquérir les prérequis nécessaires à la formulation, l'analyse et l'utilisation des algorithmes d'optimisation.
Tous les supports de cours seront disponibles sur ecampus.
#
Remarque : ce cours compte pour 3 ECTs pour l'obtention du M1-Mathématiques Appliquées
Objectifs pédagogiques
Les objectifs du cours sont les suivants
- comprendre ce qu'est l'optimisation : quels types de problèmes sont habituellement considérés et comment, quelles sont les hypothèses de base (telles que la convexité), et comment interpréter les résultats d'un problème d'optimisation
- apprendre à modéliser les applications comme des problèmes d'optimisation
- maîtriser les modèles et méthodes d'optimisation de base
- acquérir les prérequis nécessaires à la formulation, l'analyse et l'utilisation des algorithmes d'optimisation.
- Travaux dirigés en salle info : 6
- Petite classe : 8
- Cours magistral : 6
- Contrôle : 1
effectifs minimal / maximal:
10/100Diplôme(s) concerné(s)
- Master 1 Applied Mathematics ans statistics - Orsay
- Master 1 Parisien de Recherche Opérationnelle
- Diplôme d'Ingénieur de l'Ecole Nationale Supérieure de Techniques Avancées
- Master 1 Mathématiques Appliquées
Parcours de rattachement
Pour les étudiants du diplôme Master 1 Applied Mathematics ans statistics - Orsay
Le cours est conçu pour être autonome (les notes de cours seront complétées si nécessaire), mais le fait d'avoir suivi AO101 (première année) ou un autre cours d'optimisation de base, et RO201 (deuxième année) contribuerait certainement à une meilleure compréhension de ce cours.
Pour les étudiants du diplôme Master 1 Parisien de Recherche Opérationnelle
Le cours est conçu pour être autonome (les notes de cours seront complétées si nécessaire), mais le fait d'avoir suivi un cours d'optimisation de base contribuerait certainement à une meilleure compréhension de ce cours.
Pour les étudiants du diplôme Diplôme d'Ingénieur de l'Ecole Nationale Supérieure de Techniques Avancées
Le cours est conçu pour être autonome (les notes de cours seront complétées si nécessaire), mais le fait d'avoir suivi AO101 (première année) ou un autre cours d'optimisation de base, et RO201 (deuxième année) contribuerait certainement à une meilleure compréhension de ce cours.
Pour les étudiants du diplôme Master 1 Mathématiques Appliquées
Le cours est conçu pour être autonome (les notes de cours seront complétées si nécessaire), mais le fait d'avoir suivi un cours d'optimisation de base contribuerait certainement à une meilleure compréhension de ce cours.
Format des notes
Numérique sur 20Littérale/grade européenPour les étudiants du diplôme Master 1 Mathématiques Appliquées
Vos modalités d'acquisition :
- examen écrit (2h30min) consistant en des problèmes à résoudre - valeur jusqu'à 15/20
- un projet numérique à domicile (voir ecampus pour plus de détails) - valant jusqu'à 5/20
la note finale est la somme arithmétique des points obtenus à l'examen écrit et au projet
le matériel d'aide autorisé pour l'examen écrit est constitué des notes de cours (auto-écrites ou officielles) et des textes des problèmes résolus pendant les sessions d'exercices (mais pas de leurs solutions !)
le rattrapage sera soit un examen écrit (2h30min) consistant en des problèmes à résoudre - valant jusqu'à 15/20 (auxquels les points obtenus dans le projet numérique sont ajoutés pour donner la note finale) ou (dans le cas de moins de 6 étudiants) un examen oral individuel de 30-40 min consistant en des questions théoriques du course
L'UE est acquise si Note finale >= 10- Crédits ECTS acquis : 4 ECTS
Le coefficient de l'UE est : 1
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme Diplôme d'Ingénieur de l'Ecole Nationale Supérieure de Techniques Avancées
Vos modalités d'acquisition :
- examen écrit (2h30min) consistant en des problèmes à résoudre - valeur jusqu'à 15/20
- un projet numérique à domicile (voir ecampus pour plus de détails) - valant jusqu'à 5/20
la note finale est la somme arithmétique des points obtenus à l'examen écrit et au projet
le matériel d'aide autorisé pour l'examen écrit est constitué des notes de cours (auto-écrites ou officielles) et des textes des problèmes résolus pendant les sessions d'exercices (mais pas de leurs solutions !)
le rattrapage sera soit un examen écrit (2h30min) consistant en des problèmes à résoudre - valant jusqu'à 15/20 (auxquels les points obtenus dans le projet numérique sont ajoutés pour donner la note finale) ou (dans le cas de moins de 6 étudiants) un examen oral individuel de 30-40 min consistant en des questions théoriques du course
- le rattrapage est obligatoire si :
- Note initiale < 6
- le rattrapage peut être demandé par l'étudiant si :
- 6 ≤ note initiale < 10
- Crédits ECTS acquis : 2 ECTS
- Scientifique acquis : 2
Le coefficient de l'UE est : 1
La note obtenue rentre dans le calcul de votre GPA.
L'UE est évaluée par les étudiants.
Pour les étudiants du diplôme Master 1 Applied Mathematics ans statistics - Orsay
Vos modalités d'acquisition :
- examen écrit (2h30min) consistant en des problèmes à résoudre - valeur jusqu'à 15/20
- un projet numérique à domicile (voir ecampus pour plus de détails) - valant jusqu'à 5/20
la note finale est la somme arithmétique des points obtenus à l'examen écrit et au projet
le matériel d'aide autorisé pour l'examen écrit est constitué des notes de cours (auto-écrites ou officielles) et des textes des problèmes résolus pendant les sessions d'exercices (mais pas de leurs solutions !)
le rattrapage sera soit un examen écrit (2h30min) consistant en des problèmes à résoudre - valant jusqu'à 15/20 (auxquels les points obtenus dans le projet numérique sont ajoutés pour donner la note finale) ou (dans le cas de moins de 6 étudiants) un examen oral individuel de 30-40 min consistant en des questions théoriques du course
Le rattrapage est autorisé (Note de rattrapage conservée)- le rattrapage est obligatoire si :
- Note initiale < 7
- le rattrapage peut être demandé par l'étudiant si :
- 7 ≤ note initiale < 10
- Crédits ECTS acquis : 2 ECTS
- Scientifique acquis : 2
Le coefficient de l'UE est : 1
La note obtenue rentre dans le calcul de votre GPA.
L'UE est évaluée par les étudiants.
Pour les étudiants du diplôme Master 1 Parisien de Recherche Opérationnelle
Vos modalités d'acquisition :
- examen écrit (2h30min) consistant en des problèmes à résoudre - valeur jusqu'à 15/20
- un projet numérique à domicile (voir ecampus pour plus de détails) - valant jusqu'à 5/20
la note finale est la somme arithmétique des points obtenus à l'examen écrit et au projet
le matériel d'aide autorisé pour l'examen écrit est constitué des notes de cours (auto-écrites ou officielles) et des textes des problèmes résolus pendant les sessions d'exercices (mais pas de leurs solutions !)
le rattrapage sera soit un examen écrit (2h30min) consistant en des problèmes à résoudre - valant jusqu'à 15/20 (auxquels les points obtenus dans le projet numérique sont ajoutés pour donner la note finale) ou (dans le cas de moins de 6 étudiants) un examen oral individuel de 30-40 min consistant en des questions théoriques du course
Le rattrapage est autorisé (Note de rattrapage conservée)
- le rattrapage est obligatoire si :
- Note initiale < 7
- le rattrapage peut être demandé par l'étudiant si :
- 7 ≤ note initiale < 10
- Crédits ECTS acquis : 2.5 ECTS
Le coefficient de l'UE est : 1
La note obtenue rentre dans le calcul de votre GPA.
Programme détaillé
-
Session 1. Modélisation des applications en tant que problèmes d'optimisation. Préliminaires
-
Session 2. Conditions d'optimalité (cas différentiable)
-
Session 3. Algorithme SQP
-
Session 4. Fonctions conjuguées
-
Session 5. Dualité
-
Session 6. Sous-différentielles et conditions d'optimalité (cas convexe)