Descriptif
Les premiers résultats de la théorie des probabilités (loi des grands nombres, théorème central limite) concernent les suites de variables aléatoires (X(n)) indépendantes et de même loi. Les chaînes de Markov étendent ce cadre : on ne demande plus que X(n+1) soit indépendant de X(0),...,X(n), mais plutôt qu'il ne dépende que de X(n), et ce de façon homogène par rapport au temps n.
Le cours présente les fondements de la théorie de ces processus, qui a de nombreuses applications : simulations de lois par la méthode de Monte-Carlo, résolution du problème de Dirichlet, description de l'évolution de certains systèmes physiques ou biologiques, etc.
En particulier :
1. On décrira complètement l'aspect des trajectoires du processus (X(n)) sur un espace des états : classification des états, récurrence et transience.
2. Lorsque les trajectoires sont récurrentes (c'est-à-dire qu'elles reviennent systématiquement au point de départ), on les étudiera quantitativement grâce aux fréquences de visite, et aux probabilités marginales au temps n. Ces deux quantités convergent sous certaines hypothèse vers la loi stationnaire de la chaîne.
Prérequis :
Avoir suivi un premier cours de probabilités : maîtriser la notion de variable aléatoire, les probabilités conditionnelles, la loi des grands nombres.
Documents :
Un polycopié contenant le cours, les exercices et des compléments destinés aux étudiants d'Orsay est disponible sur la page web de Pierre-Loïc Méliot.
Objectifs pédagogiques
Être capable, grâce à la connaissance des principaux éléments de la théorie des chaînes de Markov :
- d’analyser ce type de modèle (discrets en temps et en espace);
- d’apporter des résultats qualitatifs et quantitatifs, ces derniers de façon exacte ou approchée.
21 heures en présentiel (7 blocs ou créneaux)
réparties en:
- Contrôle : 3
- Cours magistral : 6
- Petite classe : 12
effectifs minimal / maximal:
10/90Diplôme(s) concerné(s)
- Master 1 Applied Mathematics ans statistics - Orsay
- Master 1 Parisien de Recherche Opérationnelle
- Diplôme d'Ingénieur de l'Ecole Nationale Supérieure de Techniques Avancées
- Master 1 Mathématiques Appliquées
Parcours de rattachement
Pour les étudiants du diplôme Master 1 Applied Mathematics ans statistics - Orsay
MA101
Pour les étudiants du diplôme Diplôme d'Ingénieur de l'Ecole Nationale Supérieure de Techniques Avancées
Avoir suivi le cours MA101 en 1ère année.
Format des notes
Numérique sur 20Littérale/grade européenPour les étudiants du diplôme Master 1 Mathématiques Appliquées
Pour les étudiants du diplôme Master 1 Parisien de Recherche Opérationnelle
Le rattrapage est autorisé (Note de rattrapage conservée)- le rattrapage est obligatoire si :
- Note initiale < 7
- le rattrapage peut être demandé par l'étudiant si :
- 7 ≤ note initiale < 10
- Crédits ECTS acquis : 2.5 ECTS
Le coefficient de l'UE est : 1
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme Master 1 Applied Mathematics ans statistics - Orsay
Vos modalités d'acquisition :
F=note finale, TD=Travaux dirigés, E=Examen final
Session 1 : F=0,5TD+0,5E - Session 2 : F=1E
Le rattrapage est autorisé (Note de rattrapage conservée)- le rattrapage est obligatoire si :
- Note initiale < 7
- le rattrapage peut être demandé par l'étudiant si :
- 7 ≤ note initiale < 10
- Crédits ECTS acquis : 2 ECTS
- Scientifique acquis : 2
Le coefficient de l'UE est : 1
La note obtenue rentre dans le calcul de votre GPA.
L'UE est évaluée par les étudiants.
Pour les étudiants du diplôme Diplôme d'Ingénieur de l'Ecole Nationale Supérieure de Techniques Avancées
Vos modalités d'acquisition :
Examen écrit.
Le rattrapage est autorisé (Max entre les deux notes écrêté à une note seuil)- le rattrapage est obligatoire si :
- Note initiale < 6
- le rattrapage peut être demandé par l'étudiant si :
- 6 ≤ note initiale < 10
- Crédits ECTS acquis : 2 ECTS
- Scientifique acquis : 2
Le coefficient de l'UE est : 1
La note obtenue rentre dans le calcul de votre GPA.
L'UE est évaluée par les étudiants.
Programme détaillé
- Amphi + TD
- Amphi + TD
- Amphi + TD
- Amphi + TD
- Amphi + TD
- Amphi + TD
- Examen écrit.