v2.11.0 (5909)

Cours scientifiques - MEC_5EO04_TA : Sea states, wave propagation, and ocean wave energy

Domaine > Mécanique des fluides et énergétique, Mechanics.

Descriptif

The course is taugh in english. It divided in three main parts: (1) Characterizing waves and describing the
important physical processes governing oceanic and nearshore wave propagation, (2) Numerical
modeling of wave propagation, and (3) Ocean wave energy, including wave-structure interactions.
At the end of the course, a student should be able to:

  • describe wave characteristics using deterministic and spectral approaches,
  • understand the different physical processes governing wave transformation at a range of spatial

and temporal scales, from wind generation to interactions with the bottom,

  • evaluate the appropriate numerical modeling approaches to use for different applications,
  • understand the physical processes governing wave-body interactions,
  • estimate the absorbed wave energy of a wave energy converter, and
  • evaluate the application of industrial and academic numerical modeling approaches to simulate wave-structure interactions.

Format des notes

Numérique sur 20

Littérale/grade européen

Pour les étudiants du diplôme Diplôme d'Ingénieur de l'Ecole Nationale Supérieure de Techniques Avancées

Le rattrapage est autorisé
    L'UE est acquise si Note finale >= 10
    • Crédits ECTS acquis : 2.5 ECTS

    La note obtenue rentre dans le calcul de votre GPA.

    L'UE est évaluée par les étudiants.

    Pour les étudiants du diplôme M2 EN - Energy

    Le rattrapage est autorisé (Note de rattrapage conservée)
    • le rattrapage est obligatoire si :
      Note initiale < 7
    • le rattrapage peut être demandé par l'étudiant si :
      7 ≤ note initiale < 10
    L'UE est acquise si Note finale >= 10
    • Crédits ECTS acquis : 4 ECTS

    Pour les étudiants du diplôme Master 2 CLimat, Environnement, Applications et Recherche (CLEAR) - Water, Air, Pollution and Energy

    Le rattrapage est autorisé (Note de rattrapage conservée)
    • le rattrapage est obligatoire si :
      Note initiale < 7
    • le rattrapage peut être demandé par l'étudiant si :
      7 ≤ note initiale < 10
    L'UE est acquise si Note finale >= 10

      Pour les étudiants du diplôme Inside ENSTA Paris

      Le rattrapage est autorisé (Max entre les deux notes écrêté à une note seuil)
      • le rattrapage est obligatoire si :
        Note initiale < 6
      • le rattrapage peut être demandé par l'étudiant si :
        6 ≤ note initiale < 10
      L'UE est acquise si Note finale >= 10
      • Crédits ECTS acquis : 2.5 ECTS

      La note obtenue rentre dans le calcul de votre GPA.

      L'UE est évaluée par les étudiants.

      Programme détaillé

      Syllabus


      I. Characterizing ocean waves and sea states

      • Description of waves
      • Sea state characterization (wave-by-wave, spectral analysis)
      • Wave observation techniques and databases

      II. Linear wave theory

      • Linearization of the water wave problem
      • Dispersion relation
      • Wave kinematics and approximations in shallow and deep water
      • Nonlinear wave theories (Stokes, Cnoidal, stream function)

      Exercise: Using wave buoy measurements to generate scatter diagrams and to characterize
      wave variability at an offshore study site.

      III. Nearshore wave propagation

      • Wave energy flux conservation
      • Bathymetric refraction
      • Wave shoaling

      Exercise: Using a one-line model to calculate wave transformation in the surf zone (and
      comparison to wave tank experiments).

      IV. Coastal hydrodynamics

      • Characterization of wave breaking
      • Wave breaking impacts (undertow, setup, alongshore currents)
      • Surf zone circulation (rip currents, eddies)
      • Infragravity waves and impacts
      • Wave-current interactions

      V. Numerical modeling of wave propagation 1

      • Review of important physical processes to model
      • Differentiating phase-averaged and phase-resolving models
      • Presentatin of phase-averaged (spectral) models

      Exercise: Running TOMAWAC spectral wave propagation model to simulate wave propagation
      in the nearshore zone.

      VI. Numerical modeling of wave propagation 2

      • Review of the Navier-Stokes equations
      • Mild-slope equations
      • Boussinesq-type models
      • Fully nonlinear potential flow theory models
      • Navier-Stokes models (Eulerian and Lagrangian approaches)

      Class presentations: Students work in groups to present the different families of deterministic
      wave propagation models.

      VII. Dynamics of a body in waves

      • Nondimensional numbers (Re, Fr, KC) and similitude
      • Added mass, drag, lift, buoyancy
      • Morison equation (small bodies)
      • Diffraction-radiation problem (large bodies)
      • Second and higher-order effects

      Exercise: Use of wave scatter diagrams to calculate absorbed wave energy at the selected study
      site for selected wave energy converters.

      VIII. Modeling wave-body interactions

      • Industrial codes and open research questions
      • Experimental approaches
      • Academic models:
        • Linear theory
        • Fully nonlinear potential flow theory
        • Navier-Stokes equations

      Exercise: Use of wave scatter diagrams to calculate wave forces on a floating body at the
      selected offshore study site.

      IX. Seminar about wave-structure interactions (presented by a representative from a company
      working in the field of marine renewable energy):

      Subject:

      • fixed and floating offshore wind turbines or
      • wave energy converters

      Objectives:

      • present pilot project, study site, or existing installation
      • discuss design criteria, challenges, current needs for research

      X. Exam

      Veuillez patienter