Descriptif
The course is taugh in english. It divided in three main parts: (1) Characterizing waves and describing the
important physical processes governing oceanic and nearshore wave propagation, (2) Numerical
modeling of wave propagation, and (3) Ocean wave energy, including wave-structure interactions.
At the end of the course, a student should be able to:
- describe wave characteristics using deterministic and spectral approaches,
 - understand the different physical processes governing wave transformation at a range of spatial
 
and temporal scales, from wind generation to interactions with the bottom,
- evaluate the appropriate numerical modeling approaches to use for different applications,
 - understand the physical processes governing wave-body interactions,
 - estimate the absorbed wave energy of a wave energy converter, and
 - evaluate the application of industrial and academic numerical modeling approaches to simulate wave-structure interactions.
 
Diplôme(s) concerné(s)
- Inside ENSTA Paris
 - Master 2 CLimat, Environnement, Applications et Recherche (CLEAR) - Water, Air, Pollution and Energy
 - M2 EN - Energy
 - Diplôme d'Ingénieur de l'Ecole Nationale Supérieure de Techniques Avancées
 
Parcours de rattachement
Domaine Université Paris Saclay
Mention Sciences de la Terre et des planètes, environnement.Format des notes
Numérique sur 20Littérale/grade européenPour les étudiants du diplôme Diplôme d'Ingénieur de l'Ecole Nationale Supérieure de Techniques Avancées
Le rattrapage est autorisé- Crédits ECTS acquis : 2.5 ECTS
 
La note obtenue rentre dans le calcul de votre GPA.
L'UE est évaluée par les étudiants.
Pour les étudiants du diplôme M2 EN - Energy
Le rattrapage est autorisé (Note de rattrapage conservée)- le rattrapage est obligatoire si :
- Note initiale < 7
  - le rattrapage peut être demandé par l'étudiant si :
- 7 ≤ note initiale < 10
  
- Crédits ECTS acquis : 4 ECTS
 
Pour les étudiants du diplôme Master 2 CLimat, Environnement, Applications et Recherche (CLEAR) - Water, Air, Pollution and Energy
Le rattrapage est autorisé (Note de rattrapage conservée)- le rattrapage est obligatoire si :
- Note initiale < 7
  - le rattrapage peut être demandé par l'étudiant si :
- 7 ≤ note initiale < 10
  
Pour les étudiants du diplôme Inside ENSTA Paris
Le rattrapage est autorisé (Max entre les deux notes écrêté à une note seuil)- le rattrapage est obligatoire si :
- Note initiale < 6
  - le rattrapage peut être demandé par l'étudiant si :
- 6 ≤ note initiale < 10
  
- Crédits ECTS acquis : 2.5 ECTS
 
La note obtenue rentre dans le calcul de votre GPA.
L'UE est évaluée par les étudiants.
Programme détaillé
Syllabus
I. Characterizing ocean waves and sea states
- Description of waves
 - Sea state characterization (wave-by-wave, spectral analysis)
 - Wave observation techniques and databases
 
II. Linear wave theory
- Linearization of the water wave problem
 - Dispersion relation
 - Wave kinematics and approximations in shallow and deep water
 - Nonlinear wave theories (Stokes, Cnoidal, stream function)
 
Exercise: Using wave buoy measurements to generate scatter diagrams and to characterize
wave variability at an offshore study site.
III. Nearshore wave propagation
- Wave energy flux conservation
 - Bathymetric refraction
 - Wave shoaling
 
Exercise: Using a one-line model to calculate wave transformation in the surf zone (and
comparison to wave tank experiments).
IV. Coastal hydrodynamics
- Characterization of wave breaking
 - Wave breaking impacts (undertow, setup, alongshore currents)
 - Surf zone circulation (rip currents, eddies)
 - Infragravity waves and impacts
 - Wave-current interactions
 
V. Numerical modeling of wave propagation 1
- Review of important physical processes to model
 - Differentiating phase-averaged and phase-resolving models
 - Presentatin of phase-averaged (spectral) models
 
Exercise: Running TOMAWAC spectral wave propagation model to simulate wave propagation
in the nearshore zone.
VI. Numerical modeling of wave propagation 2
- Review of the Navier-Stokes equations
 - Mild-slope equations
 - Boussinesq-type models
 - Fully nonlinear potential flow theory models
 - Navier-Stokes models (Eulerian and Lagrangian approaches)
 
Class presentations: Students work in groups to present the different families of deterministic
wave propagation models.
VII. Dynamics of a body in waves
- Nondimensional numbers (Re, Fr, KC) and similitude
 - Added mass, drag, lift, buoyancy
 - Morison equation (small bodies)
 - Diffraction-radiation problem (large bodies)
 - Second and higher-order effects
 
Exercise: Use of wave scatter diagrams to calculate absorbed wave energy at the selected study
site for selected wave energy converters.
VIII. Modeling wave-body interactions
- Industrial codes and open research questions
 - Experimental approaches
 - Academic models:
- Linear theory
 - Fully nonlinear potential flow theory
 - Navier-Stokes equations
 
 
Exercise: Use of wave scatter diagrams to calculate wave forces on a floating body at the
selected offshore study site.
IX. Seminar about wave-structure interactions (presented by a representative from a company
working in the field of marine renewable energy):
Subject:
- fixed and floating offshore wind turbines or
 - wave energy converters
 
Objectives:
- present pilot project, study site, or existing installation
 - discuss design criteria, challenges, current needs for research
 
X. Exam