Descriptif
This course presents both theoretical and numerical aspects of decision problems with uncertainty, where one sets a probabilistic framework in order to minimize the expectation of a cost. Two directions are explored:
- we investigate the so-called "open-loop" situation, that is, the case where decisions do not depend on information available for the problem, and we thoroughly study the stochastics gradient method and its variants,
- we also study "closed-loop" optimization problems, that is, the case where decisions are based on partial information (often corresponding to measurements made in the past when facing an unknown future).
Such problems are of course well-motivated by decisions problems in the industry. They also have a deep mathematical content, especially in the dynamic case when only the past information is available. In this setting the decision is a function in a high dimensional space and therefore the numerical aspects also are challenging.
This course is part of the M2 Optimization program (Paris-Saclay University). It is given in English.
effectifs minimal / maximal:
8/30Diplôme(s) concerné(s)
- Master 2 OPTIM
- Diplôme d'Ingénieur de l'Ecole Nationale Supérieure de Techniques Avancées
- Inside ENSTA Paris
Parcours de rattachement
Format des notes
Numérique sur 20Littérale/grade européenPour les étudiants du diplôme Inside ENSTA Paris
Pour les étudiants du diplôme Diplôme d'Ingénieur de l'Ecole Nationale Supérieure de Techniques Avancées
Le rattrapage est autorisé (Max entre les deux notes écrêté à une note seuil)- le rattrapage est obligatoire si :
- Note initiale < 6
- le rattrapage peut être demandé par l'étudiant si :
- 6 ≤ note initiale < 10
- Crédits ECTS acquis : 5 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme Master 2 OPTIM
Programme détaillé
See the Web site.