v2.11.0 (6217)

Enseignement spécifique des masters - MEC_52462_EP : Hydro, wind and marine resources for renewable energy

Descriptif

After the course the student should be able to

    • use the basics of fluvial flows and tidal dynamics.
    • understand the dynamics of atmospheric , fluvial or marine boundary layers
    • understand the meteorological forcing and its variability
    • estimate the wind, the fluvial or tidal energy potential of a particular site or region
    • make the distinction between the amount of energy and the power available

- quantify the resource’s availability and its variability

Eligibility/Pre-requisites:

Basic knowledge in fluid mechanics, Bernoulli and Navier-Stokes equations.

Course main content:

The course is divided in three blocs dedicated to hydro , wind and marine resources.

1. 1 Introduction

- Economical, environmental and political issues

- Various units of energy, primary and final energy, capacity of some power plants

1. 2 Hydroelectric resource

- Water cycle, potential temperature, precipitations

- Gravitational energy: resource and energy

- Conventional dam: principle, efficiency, power capacity, capacity factor

- The mean total head H, head loss, maximum flow rate and power

- Environmental impact and carbon budget of hydroelectric power plants

2. Laboratory demonstration (ENSTA)

Observations and quantification of free surface channel flows, fluvial-torrential transition, efficiency of small hydro-dam. Data analysis and personal homework.

3. Fluvial hydraulics

- Flow regimes, Froude number

- Hydraulic load of a free surface flow

- Fluvial-torrential transition

- Hydraulic jump, dissipation

- Energy and momentum conservation

- Run of river electricity: principle, efficiency, power capacity, capacity factor

4. Basic Meteorology and wind resources

- Synoptic winds, global circulation

- local winds: sea breeze, mountain winds, …

- Wind variability, turbulence, Rayleigh decomposition

- Weibull distribution, wind spectra, turbulence intensity

5. Atmospheric or Oceanic boundary layers

- laminar boundary layer

- turbulent boundary layer, logarithmic law

- stable or unstable boundary layers

- wind or hydro measurements within the boundary layer

- On-site resource assessment

6. Wind or river turbines: Betz limits and turbines interactions

- The standard Betz law

- Betz law with a free surface

- Individual turbine wake and multiple turbines interaction

- On-site resource assessment

7. Laboratory demonstration (ENSTA)

Head loss of a free surface flow: fluvial and torrential regime, turbulent boundary layer, bottom roughness, logarithmic law. Data analysis and personal homework.

8. Tidal wave and tidal power

- History: first uses of tidal power

- Astronomical forcing

- Ocean response: Kelvin waves and tidal waves

- Bay or estuary resonance: shallow-water model

- Impact of bottom friction

- Tidal power plant: principle, efficiency, power capacity

- Environmental impact of tidal power plants

9. Tidal currents and tidal turbine

- Tidal turbine: an emerging market

- Tidal currents: variability, coastal amplification, tidal ellipses

- French and UK resources

- Bottom friction and boundary layer profile, turbine wake

- Tidal turbine: principle, efficiency, power capacity, strengths and drawbacks.

Examination and requirements for final grade:

The final grade is a combination of the reports from the laboratory sessions and a 3h individual examination with exercises (open book exam).

Langue du cours : Anglais

Credits ECTS : 4

Format des notes

Numérique sur 20

Pour les étudiants du diplôme M1 EN - Energy

Le rattrapage est autorisé (Note de rattrapage conservée)
  • le rattrapage est obligatoire si :
    Note initiale < 7
  • le rattrapage peut être demandé par l'étudiant si :
    7 ≤ note initiale < 10
L'UE est acquise si Note finale >= 10
  • Crédits ECTS acquis : 5 ECTS

Pour les étudiants du diplôme Diplôme d'Ingénieur de l'Ecole Nationale Supérieure de Techniques Avancées

Veuillez patienter