v2.11.0 (6217)

Cours scientifiques - MEC_5EO04_TA : Sea states, wave propagation, and ocean wave energy

Domaine > Mécanique des fluides et énergétique, Mechanics.

Descriptif

The course is taugh in english. It divided in three main parts: (1) Characterizing waves and describing the
important physical processes governing oceanic and nearshore wave propagation, (2) Numerical
modeling of wave propagation, and (3) Ocean wave energy, including wave-structure interactions.
At the end of the course, a student should be able to:

  • describe wave characteristics using deterministic and spectral approaches,
  • understand the different physical processes governing wave transformation at a range of spatial

and temporal scales, from wind generation to interactions with the bottom,

  • evaluate the appropriate numerical modeling approaches to use for different applications,
  • understand the physical processes governing wave-body interactions,
  • estimate the absorbed wave energy of a wave energy converter, and
  • evaluate the application of industrial and academic numerical modeling approaches to simulate wave-structure interactions.

Format des notes

Numérique sur 20

Littérale/grade européen

Pour les étudiants du diplôme Diplôme d'Ingénieur de l'Ecole Nationale Supérieure de Techniques Avancées

Le rattrapage est autorisé
    L'UE est acquise si Note finale >= 10
    • Crédits ECTS acquis : 2.5 ECTS

    La note obtenue rentre dans le calcul de votre GPA.

    L'UE est évaluée par les étudiants.

    Pour les étudiants du diplôme M2 EN - Energy

    Le rattrapage est autorisé (Max entre les deux notes écrêté à une note seuil)
    • le rattrapage est obligatoire si :
      Note initiale < 6
    • le rattrapage peut être demandé par l'étudiant si :
      6 ≤ note initiale < 10
    L'UE est acquise si Note finale >= 10
    • Crédits ECTS acquis : 4 ECTS

    Pour les étudiants du diplôme Master 2 CLimat, Environnement, Applications et Recherche (CLEAR) - Water, Air, Pollution and Energy

    Le rattrapage est autorisé (Note de rattrapage conservée)
      L'UE est acquise si Note finale >= 10

        Pour les étudiants du diplôme Inside ENSTA Paris

        Le rattrapage est autorisé
          L'UE est acquise si Note finale >= 10
          • Crédits ECTS acquis : 2.5 ECTS

          La note obtenue rentre dans le calcul de votre GPA.

          L'UE est évaluée par les étudiants.

          Programme détaillé

          Syllabus


          I. Characterizing ocean waves and sea states

          • Description of waves
          • Sea state characterization (wave-by-wave, spectral analysis)
          • Wave observation techniques and databases

          II. Linear wave theory

          • Linearization of the water wave problem
          • Dispersion relation
          • Wave kinematics and approximations in shallow and deep water
          • Nonlinear wave theories (Stokes, Cnoidal, stream function)

          Exercise: Using wave buoy measurements to generate scatter diagrams and to characterize
          wave variability at an offshore study site.

          III. Nearshore wave propagation

          • Wave energy flux conservation
          • Bathymetric refraction
          • Wave shoaling

          Exercise: Using a one-line model to calculate wave transformation in the surf zone (and
          comparison to wave tank experiments).

          IV. Coastal hydrodynamics

          • Characterization of wave breaking
          • Wave breaking impacts (undertow, setup, alongshore currents)
          • Surf zone circulation (rip currents, eddies)
          • Infragravity waves and impacts
          • Wave-current interactions

          V. Numerical modeling of wave propagation 1

          • Review of important physical processes to model
          • Differentiating phase-averaged and phase-resolving models
          • Presentatin of phase-averaged (spectral) models

          Exercise: Running TOMAWAC spectral wave propagation model to simulate wave propagation
          in the nearshore zone.

          VI. Numerical modeling of wave propagation 2

          • Review of the Navier-Stokes equations
          • Mild-slope equations
          • Boussinesq-type models
          • Fully nonlinear potential flow theory models
          • Navier-Stokes models (Eulerian and Lagrangian approaches)

          Class presentations: Students work in groups to present the different families of deterministic
          wave propagation models.

          VII. Dynamics of a body in waves

          • Nondimensional numbers (Re, Fr, KC) and similitude
          • Added mass, drag, lift, buoyancy
          • Morison equation (small bodies)
          • Diffraction-radiation problem (large bodies)
          • Second and higher-order effects

          Exercise: Use of wave scatter diagrams to calculate absorbed wave energy at the selected study
          site for selected wave energy converters.

          VIII. Modeling wave-body interactions

          • Industrial codes and open research questions
          • Experimental approaches
          • Academic models:
            • Linear theory
            • Fully nonlinear potential flow theory
            • Navier-Stokes equations

          Exercise: Use of wave scatter diagrams to calculate wave forces on a floating body at the
          selected offshore study site.

          IX. Seminar about wave-structure interactions (presented by a representative from a company
          working in the field of marine renewable energy):

          Subject:

          • fixed and floating offshore wind turbines or
          • wave energy converters

          Objectives:

          • present pilot project, study site, or existing installation
          • discuss design criteria, challenges, current needs for research

          X. Exam

          Veuillez patienter