v2.3.2 (2860)

Cours scientifique - EOS309 : Sea State, Coastal Waves and Morphodynamics

Domaine > Mécanique des fluides et énergétique.


The course is taugh in english. It divided in three main parts: (1) Characterizing waves and describing the
important physical processes governing oceanic and nearshore wave propagation, (2) Numerical
modeling of wave propagation, and (3) Ocean wave energy, including wave-structure interactions.
At the end of the course, a student should be able to:

  • describe wave characteristics using deterministic and spectral approaches,
  • understand the different physical processes governing wave transformation at a range of spatial

and temporal scales, from wind generation to interactions with the bottom,

  • evaluate the appropriate numerical modeling approaches to use for different applications,
  • understand the physical processes governing wave-body interactions,
  • estimate the absorbed wave energy of a wave energy converter, and
  • evaluate the application of industrial and academic numerical modeling approaches to simulate wave-structure interactions.

Format des notes

Numérique sur 20

Littérale/grade européen

Pour les étudiants du diplôme Master 2 CLimat, Environnement, Applications et Recherche (CLEAR) - Water, Air, Pollution and Energy

Le rattrapage est autorisé (Max entre les deux notes)

    Pour les étudiants du diplôme Diplôme d'Ingénieur de l'Ecole Nationale Supérieure de Techniques Avancées

    Le rattrapage est autorisé (Max entre les deux notes écrêté à une note seuil)
    • le rattrapage est obligatoire si :
      Note initiale < 6
    • le rattrapage peut être demandé par l'étudiant si :
      6 ≤ note initiale < 10
    L'UE est acquise si Note finale >= 10
    • Crédits ECTS acquis : 2.5 ECTS

    Le coefficient de l'UE est : 1

    La note obtenue rentre dans le calcul de votre GPA.

    L'UE est évaluée par les étudiants.

    Programme détaillé


    I. Characterizing ocean waves and sea states

    • Description of waves
    • Sea state characterization (wave-by-wave, spectral analysis)
    • Wave observation techniques and databases

    II. Linear wave theory

    • Linearization of the water wave problem
    • Dispersion relation
    • Wave kinematics and approximations in shallow and deep water
    • Nonlinear wave theories (Stokes, Cnoidal, stream function)

    Exercise: Using wave buoy measurements to generate scatter diagrams and to characterize
    wave variability at an offshore study site.

    III. Nearshore wave propagation

    • Wave energy flux conservation
    • Bathymetric refraction
    • Wave shoaling

    Exercise: Using a one-line model to calculate wave transformation in the surf zone (and
    comparison to wave tank experiments).

    IV. Coastal hydrodynamics

    • Characterization of wave breaking
    • Wave breaking impacts (undertow, setup, alongshore currents)
    • Surf zone circulation (rip currents, eddies)
    • Infragravity waves and impacts
    • Wave-current interactions

    V. Numerical modeling of wave propagation 1

    • Review of important physical processes to model
    • Differentiating phase-averaged and phase-resolving models
    • Presentatin of phase-averaged (spectral) models

    Exercise: Running TOMAWAC spectral wave propagation model to simulate wave propagation
    in the nearshore zone.

    VI. Numerical modeling of wave propagation 2

    • Review of the Navier-Stokes equations
    • Mild-slope equations
    • Boussinesq-type models
    • Fully nonlinear potential flow theory models
    • Navier-Stokes models (Eulerian and Lagrangian approaches)

    Class presentations: Students work in groups to present the different families of deterministic
    wave propagation models.

    VII. Dynamics of a body in waves

    • Nondimensional numbers (Re, Fr, KC) and similitude
    • Added mass, drag, lift, buoyancy
    • Morison equation (small bodies)
    • Diffraction-radiation problem (large bodies)
    • Second and higher-order effects

    Exercise: Use of wave scatter diagrams to calculate absorbed wave energy at the selected study
    site for selected wave energy converters.

    VIII. Modeling wave-body interactions

    • Industrial codes and open research questions
    • Experimental approaches
    • Academic models:
      • Linear theory
      • Fully nonlinear potential flow theory
      • Navier-Stokes equations

    Exercise: Use of wave scatter diagrams to calculate wave forces on a floating body at the
    selected offshore study site.

    IX. Seminar about wave-structure interactions (presented by a representative from a company
    working in the field of marine renewable energy):


    • fixed and floating offshore wind turbines or
    • wave energy converters


    • present pilot project, study site, or existing installation
    • discuss design criteria, challenges, current needs for research

    X. Exam

    Veuillez patienter