v2.11.0 (5549)

Cours scientifiques - EOS309 : Sea State, Coastal Waves and Morphodynamics

Domaine > Mécanique des fluides et énergétique.


The course is taugh in english. It divided in three main parts: (1) Characterizing waves and describing the
important physical processes governing oceanic and nearshore wave propagation, (2) Numerical
modeling of wave propagation, and (3) Ocean wave energy, including wave-structure interactions.
At the end of the course, a student should be able to:

  • describe wave characteristics using deterministic and spectral approaches,
  • understand the different physical processes governing wave transformation at a range of spatial

and temporal scales, from wind generation to interactions with the bottom,

  • evaluate the appropriate numerical modeling approaches to use for different applications,
  • understand the physical processes governing wave-body interactions,
  • estimate the absorbed wave energy of a wave energy converter, and
  • evaluate the application of industrial and academic numerical modeling approaches to simulate wave-structure interactions.

Format des notes

Numérique sur 20

Littérale/grade européen

Pour les étudiants du diplôme Diplôme d'Ingénieur de l'Ecole Nationale Supérieure de Techniques Avancées

Le rattrapage est autorisé (Max entre les deux notes écrêté à une note seuil)
  • le rattrapage est obligatoire si :
    Note initiale < 6
  • le rattrapage peut être demandé par l'étudiant si :
    6 ≤ note initiale < 10
L'UE est acquise si Note finale >= 10
  • Crédits ECTS acquis : 2.5 ECTS

Le coefficient de l'UE est : 1

La note obtenue rentre dans le calcul de votre GPA.

L'UE est évaluée par les étudiants.

Pour les étudiants du diplôme Master 2 CLimat, Environnement, Applications et Recherche (CLEAR) - Water, Air, Pollution and Energy

Le rattrapage est autorisé (Max entre les deux notes)

    Programme détaillé


    I. Characterizing ocean waves and sea states

    • Description of waves
    • Sea state characterization (wave-by-wave, spectral analysis)
    • Wave observation techniques and databases

    II. Linear wave theory

    • Linearization of the water wave problem
    • Dispersion relation
    • Wave kinematics and approximations in shallow and deep water
    • Nonlinear wave theories (Stokes, Cnoidal, stream function)

    Exercise: Using wave buoy measurements to generate scatter diagrams and to characterize
    wave variability at an offshore study site.

    III. Nearshore wave propagation

    • Wave energy flux conservation
    • Bathymetric refraction
    • Wave shoaling

    Exercise: Using a one-line model to calculate wave transformation in the surf zone (and
    comparison to wave tank experiments).

    IV. Coastal hydrodynamics

    • Characterization of wave breaking
    • Wave breaking impacts (undertow, setup, alongshore currents)
    • Surf zone circulation (rip currents, eddies)
    • Infragravity waves and impacts
    • Wave-current interactions

    V. Numerical modeling of wave propagation 1

    • Review of important physical processes to model
    • Differentiating phase-averaged and phase-resolving models
    • Presentatin of phase-averaged (spectral) models

    Exercise: Running TOMAWAC spectral wave propagation model to simulate wave propagation
    in the nearshore zone.

    VI. Numerical modeling of wave propagation 2

    • Review of the Navier-Stokes equations
    • Mild-slope equations
    • Boussinesq-type models
    • Fully nonlinear potential flow theory models
    • Navier-Stokes models (Eulerian and Lagrangian approaches)

    Class presentations: Students work in groups to present the different families of deterministic
    wave propagation models.

    VII. Dynamics of a body in waves

    • Nondimensional numbers (Re, Fr, KC) and similitude
    • Added mass, drag, lift, buoyancy
    • Morison equation (small bodies)
    • Diffraction-radiation problem (large bodies)
    • Second and higher-order effects

    Exercise: Use of wave scatter diagrams to calculate absorbed wave energy at the selected study
    site for selected wave energy converters.

    VIII. Modeling wave-body interactions

    • Industrial codes and open research questions
    • Experimental approaches
    • Academic models:
      • Linear theory
      • Fully nonlinear potential flow theory
      • Navier-Stokes equations

    Exercise: Use of wave scatter diagrams to calculate wave forces on a floating body at the
    selected offshore study site.

    IX. Seminar about wave-structure interactions (presented by a representative from a company
    working in the field of marine renewable energy):


    • fixed and floating offshore wind turbines or
    • wave energy converters


    • present pilot project, study site, or existing installation
    • discuss design criteria, challenges, current needs for research

    X. Exam

    Veuillez patienter