Descriptif
Ce cours vise à fournir les bases de l'IA symbolique, avec quelques sujets avancés sélectionnés.
Il comprend des cours sur la logique formelle, les ontologies, l'apprentissage symbolique, des sujets d'IA typiques tels que la révision, la fusion, etc., avec des illustrations sur la modélisation des préférences et la compréhension de l'image.
Objectifs pédagogiques
A la fin du cours, les étudiants seront capables de comprendre différents types de familles logiques, de formuler des raisonnements dans de tels langages formels et de maniouler des outils pour représenter les connaissances et leur adaptation à des domaines imprécis et incomplets grâce à OWL, Protegé et fuzzyDL.
effectifs minimal / maximal:
10/30Diplôme(s) concerné(s)
Pour les étudiants du diplôme Diplôme d'Ingénieur de l'Ecole Nationale Supérieure de Techniques Avancées
Connaissances de base en informatique et en algèbre.
Format des notes
Numérique sur 20Littérale/grade européenPour les étudiants du diplôme Diplôme d'Ingénieur de l'Ecole Nationale Supérieure de Techniques Avancées
Vos modalités d'acquisition :
Le cours sera évalué sur la base d'un examen écrit (50%) et des rapports remis après le travail pratique, ce qui nécessitera de créer quelques ontologies dans le cadre d'un système d'aide à la décision d'un problème de domaine librement élu (50%) .
Le rattrapage est autorisé (Max entre les deux notes écrêté à une note seuil)- le rattrapage est obligatoire si :
- Note initiale < 6
- le rattrapage peut être demandé par l'étudiant si :
- 6 ≤ note initiale < 10
- Crédits ECTS acquis : 1.5 ECTS
Le coefficient de l'UE est : 1
La note obtenue rentre dans le calcul de votre GPA.
L'UE est évaluée par les étudiants.
Programme détaillé
1- Rappel sur des bases logiques (syntaxe, sémantique ...) et aperçu de plusieurs logiques (propositionnelles, de premier ordre, modales ...) - Isabelle Bloch
2,3 - Description des logiques, des logiques floues, des ontologies et des graphes de connaissances - Natalia Diaz
4 - Didacticiel sur l'ingénierie et la conception des ontologies. Construire vos propres ontologies en utilisant OWL (Fuzzy), Protegé et fuzzyDL pour des problèmes de graphes de connaissances réels (travail pratique, y compris un rapport à la fin du cours) - Natalia Diaz
5 - Apprentissage symbolique: analyse conceptuelle formelle, arbres de décision - Isabelle Bloch
6,7 - Quelques exemples typiques dans AI: révision, fusion, abduction, avec des illustrations sur la modélisation des préférences et la compréhension de l'image - Isabelle Bloch
8 - Examen écrit