Descriptif
Les méthodes de simulation statistiques sont des outils performants pour analyser et résoudre des modèles mathématiques, en particulier lorsque des solutions sont inaccessibles d'un point de vue analytique. L'enseignement présentera les méthodes de ré-echantillonage bootstrap, leurs fondements théoriques ainsi que leur mise-en-pratique à travers l'étude de cas avec le logiciel R. L'accent sera mis sur les applications du bootstrap à l'inférence statistique et sur l'étude de méthodes d'agrégation basées sur le bootstrap.
Ré-échantillonage bootstrap: principe et mise-en-oeuvre. Estimation du biais et de la loi d'un estimateur, construction d'intervalles de confiance et de tests.
Apprentissage statistique par agrégation d'arbres de décisions : bagging, forêts aléatoires, boosting.
Le cours est illustré par des TDs informatiques.
Lien vers le site pédagogique: www.math.u-psud.fr/~poursat/STA212/
Objectifs pédagogiques
Etre capable de mettre en oeuvre les méthodes de ré-echantillonage bootstrap; d'estimer le biais et la loi d'un estimateur.
effectifs minimal / maximal:
10/30Diplôme(s) concerné(s)
- Master 1 Parisien de Recherche Opérationnelle
- Diplôme d'Ingénieur de l'Ecole Nationale Supérieure de Techniques Avancées
UE de rattachement
- STA210 : Méthodes numériques statistiques
Pour les étudiants du diplôme Diplôme d'Ingénieur de l'Ecole Nationale Supérieure de Techniques Avancées
STA201
Format des notes
Numérique sur 20Pour les étudiants du diplôme Diplôme d'Ingénieur de l'Ecole Nationale Supérieure de Techniques Avancées
Vos modalités d'acquisition :
Examen
Le rattrapage est autorisé (Max entre les deux notes écrêté à une note seuil)- le rattrapage est obligatoire si :
- Note initiale < 6
- le rattrapage peut être demandé par l'étudiant si :
- 6 ≤ note initiale < 10
Le coefficient de l'UE est : 1
L'UE est évaluée par les étudiants.
Pour les étudiants du diplôme Master 1 Parisien de Recherche Opérationnelle
Programme détaillé
1. Introduction au bootstrap
2. Arbres de décision
3. Bagging
4. Forêts aléatoires
5. Sélection d'estimateurs par validation croisée